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PREFACE

This report was produced by IBM in response to Task 4.3 in the Statement of
Work for Design/Code Verification under contract number F30602-76-C-0166. It
is delivered to RADC in accordance with item A003 of the Contract Data Require-
ments List.

The report was prepared by Matt Perriens, with significant contributions by
Dick Kopp. Consultation and review were provided by Joe Femia, Project
Engineer, and John McNamara at RADC ; Donna Campbell, Mike Fagan, Andy Ferrentino,
Marvin Kessler , Harlan Mills , and Earl Stroup at IBM; and Orville Goering at
Intech.
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EVALUATION

The principle objective of this effort is the integration of design/code

-inspections in a Top DOwn Structured Programming (TDSP) environment.

The basic objective of inspection is to detect and remove errors and

ambiguities as early as possible in the software development process. This

results not only in improved software quantity , but also in project

development cost savings.

Inspection methodologies developed were utilized on two experimental

software projects. The inspection of design and code were carried out at

definite points in the software development process, utilizing precise

procedures, various checklists, and exit criteria.

As a results of this effort , it has been determined that formal

inspections are compatible with TDSP and can be accomplished effectively

by utilizing teleprocessing facilities when face to face inspections are not

possible because of involvement of experts located at different distant

locations.

Guidelines were established for inspection team composition, training

requirements of team members, and checklists to be utilized In the inspection

process.

JOSEPH FEMIA
Proj ect Engineer
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Section 1. INTRODUCTION

1.1 BACKGROUND

In recent years considerable emphasis has been placed upon improving the
effectiveness of the processes involved in the development, maintenance and
documentation of computer software. IBM has participated in the formulation,
use , and assessment of new and refined methodolog ies .

The 15-volume Structured Programming Series1 was developed for RADC by IBM in
1974. Volume 15, Validation and Verification Study , reported on the tech-
niques currently used for verifying computer programs and software systems,
and the effect that structured programming technology has on these techniques.

The extensive use of formal
2design and code inspections , developed and testedby Michael Fagan and others , have also been reported upon. However, the

formal inspection techniques were not developed using top-down structured
programing (TDSP) and no reports have been published which describe the
effects of combining these methodologies in a software development project.
These methodologies aLe both directed towards reducing the cost of imple-
menting software and improving the reliability of the software product.

1.2 PROJECT PURPOSE

Since the concept of formal inspections was developed largely in parallel
with the implementation of TDSP it became a matter of interest to determine
whether these methodologies could be used in combination , and whether formal
inspections ought to be made a part of RADC ’s software development and procure-
mént practices.

IBM’s assignment for this project was to examine the objectives , assumptions ,
and methods of TDSP and informal inspections , to develop an integrated soft-
ware development methodology based upon our experiences with two experimental
software development projects, and to make recommendations to RADC regarding
the combined use of these methodologies .

Both TDSP and formal inspections seek to facilitate the production of programs
that are correct. TDSP is a program design and implementation methodology
which accomplishes correctness through recursive verification of incremental

‘Copies of individual volumes or the complete set may be obtained from the
National Technical Information Service (NTIS), 5285 Port Royal Road ,
Springfield , Virginia 22161, by referencing RADC-TR-74-300.
2Reference several IBM technical reports and an IBM Systems Journa l article
as shown in the Bibliography .
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levels of design and code. Formal inspection is a method of controlled
inspection of design and code , carr ied out at defined points in the software
development process , with clear and precise procedures , checklists , and exit
cr iteria.

There is less than general agreement on what phases or tasks the software
development process encompasses . Formal inspection ass umes at least three
phases :

o High-level design
o Low-level design
o Coding, testing, and integrating .

TDSP focuses primarily on the latter two of these three.

1 .3 PROJECT DESCRIPTION

The principal objective of the study leading to this report was to develop a
workable integration of formal inspections and TDSP. To accomplish this , we
studied current verification techniques, formulated a preliminary plan for
integrating formal inspections and TDSP, and implemented that plan (with
inevitable modifications) on the development of two experimental software
products: a COBOL precompiler and a JOVIAL/JOCIT precompiler.

The conclusions and recommendations presented here are based mostly on a
comparative analysis of the methodologies themselves. For reasons explained
in greater detail throughout this report , the data gathered from the two
experimental tasks were insufficient to provide statistical support for the
conclusions. The experimental conclusions and recommendations that do appear
here should, therefore, be viewed as tentative.

1.4 CONCLUSIONS

a. Formal inspections are basically compatible with TDSP. They have
common objectives , but their methodologies show occasional differ-
ences in scope, timing, and focus. To integrate these methodologies ,
appropriate modifications will have to be made to each.

-: b. High-level design is not addressed specifically by TBSP. Hence,
there is no conflict between the methodologies at this level.
Formal inspections could benefit, however, from better high-level
design methodologies . This is an area for further exploration .

1-2
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c. Successf ul app lication of formal inspections in a TDSP environment
depends critically on total inan~gement commitment, close adherence
to formal inspection procedures , and the precise formulation and
application of exit criteria for tasks being inspected .

d. TBSP and formal inspections are complementary in the sense that
TBSP includes the development of design, code , and documentation
which are highly structured and therefore, easier to read , compre-
hend, and verify . Training in the verification oriented discip lines
of TBSP is likely to enhance the effectiveness of all who partici-
pate in the formal inspections.

e. Formal inspections can be made more effective through the use of
good supporting documentation and visual aids. Such aids should
clearly preser~t the principal model elements , their system represen-
tations , as well as their interrelations .

f. It is important for moderators to undergo specialized training in
planning and conducting formal inspections . Such training , as
provided by IBM, is directed toward the mechanics as well as the
human relations aspect of reviews and inspections .

g. By their nature , formal inspections are likely to be most effective
on large projects. The validity and pertinence of data collected
and fed back into other subtasks of the developing system derive
largely from size -- from the weight of numbers and the likelihood
that an analyzed activity will recur.

h. Teleprocessing facilities may provide a welcome alternative to
face-to—face inspections on projects which require short—time
involvement of experts from distant locations . Our own experiment ,

— using the NLS (online system) facilities for the COBOL precompiler
code inspection , yielded very good results (see Appendix A).

1.5 SUMMARY RECOMMENDATIONS

a. In order to obtain statistical evidence of the cost-effectiveness
of formal inspections , RADC should implement the recommended inspec-
tion methodology on a variety of operational software projects
using TBSP.

b. High-level inspections 
~
1o~ 

should be conducted according to
existing formal inspection guidelines. Design (Ii) and code (1 .~,

)
inspections can be conducted separately or in combination depen~ing
on prevailing conditions .

1For a survey of the technique , samples of records and checklists , as well as
further references, see Fagan, M. E., “Design and Code Inspections to Reduce
Errors in Program Development,” IBM Systems Journal, Vol. 15, No. 3, pp . 182-211.

1—3
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c. Except for certain types of problems, high—level design (trans-
forming a problem description into a program structure) is less
well-defined and developed than program design and implementation.
The following facets need to be addressed :

1. Defining and delimiting the scope of all phases and subtasks
comprising the sof tware development process

2. Establishing appropriate levels of explicitness , completeness,
etc., for each of these subtasks, with emphasis on the high—
level design phase.

3. Deriving pertinent inspection criteria for each of these
subtasks, to augment the set currently being used in formal
inspections.

4. Classifying existing design methodologies according to their
scope, level of explicitness , and completeness.

d. Inspections should normally be carried out by a team of four members :
the reviewee , two inspectors , and a moderator.

e. Training in formal inspections is required for persons who will
serve as moderators . Training or experience in TDSP, emphasizing
the verification and stepwise refinement methods, is required for
everyone involved in the inspection process.

f. Vendors should submit their own inspection plan indicating

o At which points inspections will be applied
o What criteria will be applied
o Inspection team makeup
o Feedback path
o Checklists.

Proposals should clearly set forth the high-level design methodology
vendors plan to use. In fact, the proposal itself should be
developed according to this methodology.

1.6 REPORT ORGANIZATION

The first section of this report contains background information which led to
this study ,  a description of the project and its purpose , conclusions , and a
summary of recommendations .

Section 2 contains a concise review of TDSP concepts pertinent to this study.

Section 3 discusses the implications of implementing forma l inspections in a
TBSP environment , based upon our review of current literature and experience
with the two experimental projects.

1-4
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Section 4 expands upon the summa ry recommendations presented in the first
section.

Appendices A and B contain the detailed description of experimental results
obtained from the inspections performed upon the two precompiler tasks.

Appendix C contains working notes on the place and scope of design in the
software development process and suggests areas for further  exploration .

1—5
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Section 2. TOP-DOWN STRUCTURED
PROGRAMMING

2.1 INTRODUCTION

The fundamentals of the structured programming technology were described in
the 15-volume series on Structured Programming , produced by IBM, FSD, under
U.S. Air Force (RADC) contract #F30602-74C-0i68. (Reference Appendix B of
Volume 15 of that series.) This description encompassed three related
techniques :

a. Top-Down Structured Programming (TDSP)
b. Programming Support Libraries (PSLs)
c. Chief Programmer Team (CPT) operations .

Only the first of these techniques , TBSP , has a direct effect on the imple-
mentation of formal inspections . PSLs can facilitate such implementation by
providing readable , structured documentation for use during inspections. The
principal characteristics of TDSP are briefly reviewed below .

2.2 TBSP DEFINITION

TDSP is a methodology that includes the two interrelated techniques of
structured programming (SP) and top-down programming (TDP).

SP is based on the well-known Structure Theorem of Boehm and Jacopini ’,
which says that any proper program (a program having but one entry and one
exit) is equivalent to a program containing only the three logic structures:
SEQUENCE, IFTHENELSE , and WHILEDO (or DO WHILE).

These three structures are prime programs because they do not contain any
subprograms that are proper programs . Prime programs can be viewed as the
bu ild ing blocks from which all compound programs are made . Conversely, they
are the “primes” into which all proper compound programs can be “factored”
(parsed).

These few concepts provide the basic tools for both the generation and anal-
ysis (parsing) of programs . The notion of a prime program is the key to the
conceptualization of fundamental program des ign and provides the starting
point for the process of stepwise refinement .

‘Boehm , C. and Jacop ini , J., “Flow Diagrams , Turing Machines and Languages
With Only Two Formation Rules ,” CACH, Vol. 9, No. 5, May 1966 , pp. 366-371.

ii
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Use of the basic logic structures is reCommended because it yields a number
of advantages, chief among which is a clear visibility of program structure,
not only to the eye, but also to the mind . This, in turn, leads to greater
manageability and, hence, verifiability of programs. Since verification
constitutes our principal concern on this project, two related facts should
be mentioned in connection with SP and forma l inspections:

a. SP as a methodology incorporates a set of correctness proofs which
enable the designer/programmer to confirm at each step of the
program’s development that no errors have been introduced.

b. Formal inspections begin with a high-level design (Is) inspection,which is governed by external critera, i.e., it is primarily user
oriented. The exit criteria applied in this inspection are such as
to guarantee an adequate basis for the development of an internally
(data processing) oriented low-level design and inspection (Ii).

The integration of the two methodologies is illustrated in Figure 1.

On the software development side, the high-level design activity is less well
defined than low-level design, coding, and integration. This gap had to be
filled to permit systematic development and inspection of the experimental
programs called for in the contract.

On the inspection side detailed guidelines have been defined for all three
kinds of inspection. They will be described in greater detail in Section 5
where we viii address the problem of implementing these inspections in a top-
down structured programing environment. At that point we will also reexamine
the TDSP practices and suggest extensions or modifications needed to effect
the integration of the two methodologies.

2—2
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Section 3. IMPLEMENTING DESIGN/
CODE INSPECTIONS IN A
TOP-DOWN ENVIRO$MENT

3.1 INTRODUCTION

The principal objective of this project has been to investigate the feasi-
bility of implementing formal inspections in a Top-Down Structured Programing
(TBSP) environment.

Formal inspections aim at achieving improved quality and productivity through
highly structured reviews of design and code. These inspections are held at
predetermined stages of the software development process by a team cons isting
of a moderator , the developer, and one or more inspectors. Detailed error
analysis and reporting procedures are a significant part of this review
method .

When one speaks of reviews in a TBSP environment, one usuall y has in mind the
so—called Structured Walk-Throughs. But such a comparison of formal inspec-
tions with Structured Walk-Throughs tends to obscure the fact that, in TBSP,
the verification of programs is not separate from, but an integral part of,
the very process that creates those programs. Consequently, a major part of
the verification process is continual rather than periodic in TBSP.

Our own experience with formal inspections (as applied to design and code on
two precompiler development tasks) indicates that it is, indeed, feasible to
implement formal inspections in a TBSP environment. Some minor and some
major problems must be faced.

These problems derive mainly from the following characteristics of the two
methodologies under investigation:

a. In TSDP , designing and coding are alternating (recurring) rather
than sequential (one-time) activities. As a consequence, design is
not complete until the stepwise implementation process has reached
the bottom level of the program structure. By then most of the
coding has already been done.

b. Formal inspections address high-level design, low-level design, and
code. The high-level design process, however, is not yet clearly
defined in either scope or methodology. TDSP, in particular, lends
most of its methodological support to program (low-level) design.

For all their differences, formal inspection and TBSP are also complementary
in several ways. This makes their integration not only possible but also
desirable.

3-1
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3.2 FORMAL DESIGN/CODE INSPECTIONS

Formal inspections of design and code, as developed by Michael Fagan and his
associates at IBM, can be characterized as follows:

a. Their primary purpose is to improve productivity by attaining ever-
improving error rates.

b. These improvements are made possible by a systematic and efficient
design and code verification process, with well-defined roles and
procedures for inspection participants.

c. Another important factor in attaining these improvements is the
manner in which inspection data is categorized and made suitable
for process analysis.

d. The programing process is viewed as consisting of the following
process operations and levels, with corresponding outputs and
inspections:

Process Output (+ detailed
Operations exit criteria) Inspections

[Leve l 0 Statement of Objectives

Level 1 Architecture
I Level 2 External Specifications

DESIGN I Level 3 Internal Specifications 4
High-level design

I . . . . I Inspectioni Level 4 Logic Specifications 0
I

Low-level design
I 1lnspection

CODE [Level 5 Coding/Implementation Code Inspection

TEST ELevel 6 Function Test
Level 7 Component Test

LLe”~
el 8 System Test

Note: Exit criteria for a particular process operation are requirements
that must be satisfied before the next process operation can be
started. This involves a yes/no decision based on a review of
major and minor errors recorded and the satisfactory completion
of follow-up activities.

3-2 
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e. To allow inspectors to focus on but one objective at a time, formal
inspections are carried out in a series of separate inspection
operations:

Inspection Operation Purpose

1. Overview Communication/general education
2. Preparation Education (detailed)
3. Inspection Error finding
4. Rework Error fixing
5. Follow-up Error fixing control

f. The developers of the formal inspection technique strongly emphasize
the crucial importance of management commitment from the beginning
of the project. This commitment includes prior scheduling and
allocation of personnel and funds. Without this, inspections are
all too likely to be deferred until disaster has struck. At that
point, audits and inspections -- no matter how systematic -- amount
to little more than autopsies.

Having an established process and formal procedure, inspections tend to vary —

less and produce more repeatable results than do walk-throughs. Although
there appears to be a clear tendency toward more systematic and rigorous
reviews -- even among those who would say they conduct walk~throughs -- Faganand his associates were among the first to proclaim the benefits of systematic
inspection-data1gathering and analysis, and they supplied a methodology forattaining them.

3.3 EXPERIMENTAL IMPLEMENTATION OF FORMAL INSPECTIONS AND TOP-DOWN
DEVELOPMENT

3.3.1 Compatibility of the Two Methods

Before describing our application of formal inspections to our own develop-
ment of two precompilers , we need to make a few preliminary observations
pertinent to TDSP, formal inspections, and the softwa re development process
in general. (Some of the observations made here imply extensions of the SP
.methodology as described in the 15-volume SP series.)

a. It must be recognized that the term top-down development means
different things to different people. (See, for example, “How
Many Directions is Top-Down,” by Dennis P. Galler, Datamation,
June 1976.) This unfortunate fact makes effective communication
difficult and casts doubt on the comparability of production and
inspection data collected on projects that were reportedly done
“top-down .”

‘See ii. E. Fagan, “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal, Vol 15., No. 3 , 1976 , pp . 182-211.

3-3
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b. This problem is complicated by the fact that there is less than
total agreement on the sequence and nature of subtasks comprising
the software life cycle or even the software development process.
(See Appendix C.)

C. Low-level design inspections (I ) and code inspections (1
2
), involve

the systematic review of produds for which increasingly effective
methodologies are being developed as part of the Modern Programming
Practices repertoire. If by high-level design, however , we mean an
externally (user) oriented activity that systematically turns a
user’s problem statement into a structure for the computer programs
required to solve that problem, then we can find only scant techno-
logical support at the present time. Specifically, the top-down
structured approach described in the SP series, covers only program
design. This would be the appropriate subject matter for a low-
level (Ii) inspection. The TBSP methodology assumes that some
prior top-down decomposition process has produced a definition of
all the modules of the program being developed, the relationships
among modules (including interface specifications), and a descrip-
tion of the format of any coimnon data sets. This is a high-level
design activity, recorded in Process Design Language or in some
other suitable language. Detailed design of individual modules is
not envisaged at this stage. The structural decomposition of the
program into its component modules can be shown hierarchically in
the form of a decomposition tree. An example is shown in Figure 2.

A representation in matrix form shows that several modules are
called by more than one higher-level module (see Figure 3).

d. In TBSP the low-level design is not developed all at one time. Nor
is the coding done all at one time. They are done in parallel. As
a result, there is at every level a (recurring) cyclic activity of
designing, coding, testing (and integrating). Coding of a module
is not begun until the detailed design of its subsidiary modules
has been completed . Indeed, since the code of a module may contain
stubs for lower-level (called or included) code, one can say that
the code is not fully defined without the design of the subsidiary
modules.

e. Segments (and the modules built up from them) are implemented in
the order of logic flow, so that the program , although incomplete
at any of the intermediate stages of development, will always be
executable (assuming appropriate stubs have been written). In
pra ctical situations , the implementation is frequently begun with a
single selected path of the calling hierarchy -- either because
that path is known to be critical , most complex , or simply because
it implements a function that is easily recognizable by the intended
user.

3-4
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Called Modules

~aIhng Modules A B C D E F G H I J K L M N 0 P 0 R S T

A X X X X  
-

B X X X

C x x
D X X

E X x
F x x x
I X X X
K x x

Figure 3. Matrix of Decomposition
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f. The English-like PDL statements provide not only the high-level
(and later , low-level) logic for the program code, but also the
narrative which will contribute to making the code easy to follow.
(Typically, this narrative finds its way into comments and module
prologues.) This narrative is a valuable aid to program reading
(as, for example, in preparing for an inspection’).

g. Because of the stepvise-refinement approach followed in TBSP, there
is always something “interim” about design and code at every level
except the lowest. Yet they have logical and operational complete-
ness. (Perhaps it would be less misleading to say that at every
level there is operational closure.)

3.3.2 Implications for Implementation of Design/Code Inspections

a. Since a program segment being developed according to TBSP will
generally amount to no more than a page of code, one will not
normally call together an inspection team of up to four persons to
inspect so small a unit .

This is a matter of cost justification, an aspect we were not able
to address at all in our preconspiler experiments. Depending on
project organization, proximity of team members, etc., it is possible
that ¶uch an inspection could be conducted effectively at moderate
cost. In our own case, we decided that we would have to have
enough code to justify at least a two-hour inspection. But when
one chooses to let compiled code build up, the full effectiveness
of formal inspections may not be able to manifest itself. This is
because by the time the first code inspection is held , the design-
code integrate cycle may already ha~-~ been executed, and in producingoperable code for each of the incremental expans ions, the designer/
coder is likely to have found errors. But removal of these errors ,
while necessary to produce running code, is not sufficient to
produce correct code. From this standpoint , a formal inspection of
the same segments should not be regarded as redundant.

b. Because of the cyclic implementation approach of TBSP, there is no
point at which the design phase can be said to have been completed
and coding can be begun. This prevents a straightforward implemen-
tation of formal design and code inspections.

A low—level design inspection is normally held only once , namely,
when the level of detail attained is sufficient for coding . Thus,
there is a timing conflict here between formal inspections and
TBSP, for at any intermediate stage of TDSP development, there will
be code as well as design to be inspected . But, according to TBSP
practice , the design will always be a level ahead of the code .

11n our report on the COSOL/NLS experiment (Appendix A) we comment on the
possible cost-effective use of telecommunication systems under certain
conditions .

3—7
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Should code and design inspections be kept separate, for logical or
economic reasons? Will alternating between code and design inspec-
tions pose additional control and communication problems for the
moderator and everyone else involved i~~the inspections? Since , as
we pointed out above, the code of an n level module can be said
to depend for its full definition on the detail design of its
subsidiary modules , there seems to be no compelling logical reason
against mixing design and code inspections. Of course, inspectors
would derive maximum benefit from having reviewed the design of the
lower level modules prior to reviewing the code of the present
module .

There may also be practical considerations which dictate the alter-
native to be chosen. For example , it may be easier to mix design
and code inspections on a small project than on a large one -- for
reasons of logic as well as logistics.

3.4 TUE NLS/COBOL EXPERIMENT SUMMARY

3.4.1 Introduction

This experiment involved the formal inspection of COBOL precompiler code
being written in the L-1O language. (Development of this precompiler was a
deliverable on contract #F30602-76-C-O115 with RADC. See Appendix A.)

This code inspection was to be carried out via the teleprocessing facilities
of the NLS (Online System). The inspectors were L-1O experts located on the
west coast. The moderator and developer were located at IBM FSD, Gaithersburg ,
Maryland . It was anticipated that the NLS facilities (backed up by a voice-
line hookup) would be used in the overview and inspection operations , with
optional use reserved for the remaining operations (preparation, rework , and
follow-on). The electronic mail facilities of NLS would be used to disseminate
specifications and working documents to the members of the inspection team
during the entire review proces s.

3.4.2 Inspection Operations

The overview operation was conducted via NLS, the author discussing via
voice-line the inspection plan that had been sent out to the west coast
participants through the “mail” facilities of NLS. This plan (which could be
read on the CRT by all inspection participants) covered the general objectives
of the inspection experiment , the use of the NLS shared-screen facilities ,
the five operations comprising the inspection (and the objectives of each),
the roles of the participants in each of these operations , a tentative sched-
ule , and the NLS procedures for effecting two-way communication between east
and west coast.

The overview session lasted about one hour. All participants were of the
opinion that it had served the intended purpose and that the NLS facilities
had provided excellent support for the discussions .

3-8
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No significant problems were communicated during the preparation operation.

The code inspection operation lasted 1 hour and 45 minutes. During this
period , the code representing the DOWHILE and DOUNTIL process of the COBOL
precompiler were inspected (about 100 lines of executable L—10 code).

Code reading proceeded very smoothl y via voice-line and CRT display . Each
participant also had before him a printed (hard copy) version of 

1
the code ,

the design specifications , and error check lists. Six major and seven minor
errors were found.

During the rework operation , the designer or coder resolves all errors or
problems posted during the inspection. It should be mentioned that, because
of the great flexibility of the NLS shared-screen facilities , the west coast
inspectors showed a tendency (during the inspection operation) to demonstrate
online how certain errors or problems could be resolved. Thus, some of the
error correction work was actually done during the inspection —- contrary to
standard formal inspection procedure .

Two additional errors -- one major and one minor -- were found during rework.

The follow-up operation presented no difficulties , and testing of the final
code revealed no further errors .

3.4.3 Conclusions

The experiment showed that formal inspections can be conducted via a telecom-
munications system like NLS, when suitably augmented with audio. Elsewhere
we discuss the circumstances under which these facilities may provide a
welcome alternative to face-to-face inspections.

The author/designer of the precompiler judged that the inspection is likely
to have cut debugging time for the inspected code in half.

In retrospect, it is interesting to observe that few communication problems
arose during this experiment. During the JOVIAL inspections, communication
did become a problem at times. Of course, these inspections involved both
design and code and spanned a much larger period of time, making a certain
amount of relearning inevitable. Also , the COBOL experiment involved only
100 lines of NLS code . Perhaps another factor may have been our realization
that we were going to have to communicate via relatively limited channels and
that therefore, unconsciously,  we put a greater effort into the composition
and compilation of inspection material’s for the NLS/COBOL inspections than
for the JOVIAL/JOCIT inspections .

Seven major and eight minor errors were found. Total time spent by all
participants was about 20 man-hours . (This does not include some 20 hours
devoted to inspection planning and composing , and transmitting the NLS mes-
sages containing the inspection materials.)

major error is one which would cause system fa ilure.
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The inspection rate attained on this experiment was 60 lines of executable
code per hour. This is well below the published average of some 150 lines
per hour. There were several reasons for this:

a. Not all participants were intimately familiar with the operation of
the NLS system. In addition, system response was unusually slow
during the period of the inspection.

b. As mentioned above, a certain amount of error correction advice was
given during the code inspection.

c. Because of time pressure , the preprocessor code has been written
virtually without comments . This probably led to more online
clarification than would otherwise have been necessary .

Despite these minor problems , six of the seven major errors were found during
inspection (86 percent). It took about one more hour of programmer time to
attain error free execution.

3 . 5  THE JOVIAL/JOCIT EXPERIMENT

3.5.1 Introduction

This experiment involved high- and low-level design inspections as well as
code inspections . The software product inspected was a JOVIAL/JOCIT precom-
piler written in COBOL. (See Appendix B.)

The JOVIAL/JOCIT precompiler was developed and implemented “top-down,” in the
sense that a hierarchic decomposition was produced which served as the struc-
tural guideline for stepwise implementation beginning with the top module of
that structure. The first branch to be implemented (and the only one to be
fully inspected) was that representing the CASE structure. The cyclic imple-
mentation technique was followed whereby a particular module is not coded
until the detail design of its subsidiary modules has been completed and
inspected. Design and code inspections were conducted separately. Both
high- and low-level design were recorded in the Process Design Language
(PDL) .

The functional decomposition tree for the JOVIAL/JOCIT precompiler is shown
in Figure 4.

It is important to note that, even in a top-down implementation , one does
look ahead through the entire system structure to determine as early as
poss ible which paths are especially critical or which modules are extraor-
dinarily complex . Only then is one in a position to proceed with detail

~gram design -- top-down or any other kind .
we explained above , the top-down implementation method dictates that

absidiary modules must have been designed in detail before their parent
module can be coded. The resulting cyclic processing is carried out again

3-10
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JOV IAL /JOCIT
Precompiler Level 1
Control Module

I I I I
4 

Find and I Process Scan for Process 1
Validate ~~~~~~~~ C Messages 

Level 2

_ _ I I
IFTHENELSE [ DOWHILE 

[
DOUNTIL f CASE Level 3

I 1
Level 4

Figure 4. Functional Decomposition Tree for the JOVIAL/JOCIT Precompiler
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and again as development proceeds downward through the structural decomposi-
tion tree. TBSP also suggests that design and code be expressed in small
segments -- preferably small enough to fit on one page. A typical coded
segment for a module on, say, level n, contains code as well as “stubs” for
any calls to lower-level modules. With these stubs even a small program can
be made “operable” because it is operationally closed even through it is
still lacking in detail. The objective of TBSP is to have operable code at
each increment.

In formal inspections, a ratio of 1:15/25 (between design-language statements
and source statements) is used to ensure that a certain level of design
detail has been attained before even the highest-level inspection is called.
We estimated that this level of detail would be reached between the second
and third levels of the decomposition tree shown above. Since we also wanted
to keep the inspections down to some reasonable number, we formulated the
following implementation and inspection plan:

a. Inspect high-level design 
~
1o~b. Design levels one through four in detail

c. Inspect low-level design (Ii)
d. Code levels one, two, and three
e. Inspect code for levels one, two, and three (12

)
f. Code level four
g. Inspect code level four

• Because of its complexity, we chose the CASE-handling branch as the first
branch to be implemented. (This is shown symbolically by the added empty
boxes on level four of the decomposition tree. For the complete modular
decomposition see Appendix B.)

Because the problem was relatively small, we were able to preserve the layered
approach to design and coding, satisfy the single-path implementation guide-
line , and also keep design and code inspections separate . Elsewhere in this
report we point out that there appears to be no compelling logical reason to
avoid mixing design and code inspections. We chose not to mix them primarily
because we wanted to adhere as closely as possible to the formal inspection
methodology .

In inspecting the high-level design , we found that it is difficult not to

4 become concerned with data processing (internal) requirements at a very early
stage. We had to make a conscious effort to develop a decomposition tree
that would show user-identifiable functions below the second level. As a
consequence , a number of design revisions were suggested during the inspec-
tion which , in retrospect , were seen to reflect a level of detail inappro-
priate for a high-level inspection . The inspection effort was not wasted ,
however. By the time the rework had been completed , we had not only a high-
level design but a big part of the low-level design as well.
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3.5.2 Inspection Operations

The high-level design inspection covered about 300 PDL statements, lasted two
hours , and yielded six minor errors . It covered the entire precompiler
design. As mentioned above, the design was too detailed for a high-level
design and, as a consequence , the inspection criteria also tended to focus
too much on detail. Rework , therefore, consisted mainly in adjusting the
scope of the design so as to bring it closer to the ratio suggested for
formal inspections (one design process statement per 15-25 source statements
of code). Additional rework went into an elaboration of the design specif i-
cations, and the breaking down of the keyword algorithms into separate proced-
ures allowing cleaner error handling.

The low-level design inspection covered some 700 PDL statements , lasted two
hours , and yielded eight major and seven minor errors. This inspection
covered the entire design of all precompiler modules.

The code inspection of first- and second-level CASE code lasted two hours and
revealed two major and five minor errors. The two major errors involved one
omission and one logical error.

The lowest-level inspection of CASE handling code (represented by levels
three and four on the functional decomposition tree) was completed in two
sessions taking up about two and one half hours. A total of four major and
five minor errors were uncovered in about 300 lines of executable COBOL code

- - (or some 30 errors per 1,000 lines of code).

‘Three of the major errors were omissions while the remaining five involved
logical errors .
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A summary of the JOVIAL/JOCIT inspection results is shown in Table 1.

Table 1. Summary of JOVIAL/JOCIT Inspection Results

Major Major
Errors Number Number Errors Errors

of PDL of per per K PDL
Formal Inspections Major Minor Statements NCSS* K.NCSS Statements

High-Level Design -- 6 300 0
Inspection (lo)

Low-Level Design 8 7 700 11
Inspection (Ii)

Code Inspections 6 10 1125 5.3

Unit Testing 0 0 1125 0
Reworked Code

*NCSS -- Noncommentary source statements; i.e., executable statements

3.5.3 Conclusions

a. Our own experience indicates that, ‘with minor adjustments, formal
inspections of high-level design, low-level design, and code can be
carried out effectively within a TBSP framework.

b. The TBSP methodology focuses on control flow because practical
experience seemed to indicate (and our own experience has confirmed)
that most major errors are logical errors. We must add to this,
however, that we experienced some difficulty in classifying errors.
The logical category therefore became a receptacle for several
“unclear” cases.

c. The consensus is that the checklists for the particular programming
language (COBOL) and the particular inspection being conducted
were quite useful in that they facilitated a systematic inspection.
(For an example of inspection checklists see Figures 7 and 8.) The
inspectors expressed the opinion that a cross-reference list of all
program entities would have been very useful. Ideally such a list
should also indicate where the entities are defined and modified.
Another desirable aid, which should be kept on display throughout
an inspection, would be a structural representation of the calling
hierarchy.

d. The inspectors expressed the opinion that they would not have been
able to work as effectively as they did without their prior training
in TBSP, particularly code reading and verification methods.
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It should be noted (again) that neither the NLS/COBOL nor the JOVIAL/JOCIT
experiment involved straightforward implementation of formal inspections.
They were experimental tasks in which the software developed served as vehicles
for the formulation of a modified formal inspection procedure that would be
compatible with TBSP. It was a learning experience for all involved. The
tasK of testing the approach proposed here still remains to be done.

3.6 OTHER EXPERIMENTAL DATA

Additional data has been collected from two ongoing projects in the Federal
Systems Division. The first of these projects is a large realtime system,
presently employing approximately 300 people . Up to this time only two or
three departments have combined TBSP with formal inspections , and only one
moderator has received formal training. However, project management has
requested additional moderator training and plans to implement formal inspec-
tions on a project-wide basis. The following suninarizes their conclusions
regarding the use of formal inspections in a TDSP environment .

o Design and code increments for this project are sufficiently large
that I~ and 1

2 inspections are held as separate inspections.

o The effectiveness of the moderator and the inspection process is
hampered if the moderator has not received formal training.

o When the moderators were asked their opinion of the effectiveness
of design/code inspections , the trained moderator was quite positive ,
the untrained moderators were less so.

o Two groups were inspecting 100 percent of the work prod uced , one
group was inspecting about 50 percent, based upon the criticality
and complexity of the module. All programmers had at least one
module inspected .

o There is a need for management commitment by recognizing that
preparation for an inspection is a high priority task for the
inspectors , in ,‘~ost cases higher than the individual coding or
design tasks of those inspectors.

o For one sub-project, for which error statistics were maintained ,
approximately 80 percent of the total errors reported were found
during inspections .

Following (Figures 5 through 8) are samples of typical forms used in the
control of the inspection process on this project. They are shown here
because they have proven useful in the course of several dozen design and
code inspections on a “real-world” software development effort.
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The second project which was reviewed was a moderately sized (approximately
35 people) data base management/process control activity. There are two
points of interest here regarding formal inspections:

o Only modules deemed critical either because of their complexity or
significant system dependency were inspected.

o In some cases, because of small development increments, I~ and 1
2inspections (design and code) were combined , resulting in a combin-

ation of code , PDL, and textual material being inspected.
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Design/Code Review Checklist

Moderator

1. Determine who will attend walk-through or cede review. (Four
to six people generally) and notify them.

a. Design team member
b. Technical leader
c. Anyone whose programs interface with product
d. Data Base Administrator (if IMS is being used)
e. System Analysis (design inspection only)
f. Management (design inspect ion only) .

2. Distribute design or code review materials at least two working
days prior to scheduled meeting. Materials may consist of
HIPO, PDL, charts , diag rams , tables , etc.

3. Select a recorder and furnish him with the necessary forms.

4. Serve as moderator at the actual design or code review .

0 s. Get a copy of errors from recorder.

0 6. Have all errors listed been corrected?

1J 7. Update error list in the Design/Code Inspection Report Book
which is maintained by the department .

Figure 5. Design/Code Review Checklist. (Moderator)
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Design/Code Review Checklist

Recorder (If different from Moderator)

0 1. During the design or code review , keep a comprehensive list of
all errors on the Structured Walk-Through/Code Review Error
Form.

0 2. Give a copy of the errors listed to the programmer who will
make the corrections .

3. Get an estimate of elapsed time to make the corrections from
the programmer.

fJ 4. Complete the Design/Code Inspect ion Report and file it along
with a copy of the Structured Walk-Through/Code Review Error
Form containing the detected errors in the Design/Code Inspec-
tion Report Book in the CRP bookcase.

U 5. Contact the programmer to insure detected errors have been
corrected after the estimated time for correction given by the
programmer has elapsed.

0 6. When all errors have been corrected , initial Design/Code
Review Error form signifying all errors have been corrected.

Figure 6. - - Design/Code Review Checklist (Recorder)
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Design/Code Inspection Error List

(1) Product Name 
_______________ 

(2) Product Type (3) Date / /

(4) Function _________________________ (5) System 
__________ 

(6) Time :

(7) Moderator 
__________ 

(8) Recorder 
__________ 

(9) # of Participants

(10) Description ___________________________________________________________

Initial when all errors corrected 
________

Date
Num. Description Corrected

Figure 3.3 Page 
— 

of 
—

Figure 7. Design/Code Inspection Error List
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Section 4. RECOMMENDATIONS

4. 1 GENERAL

The following observations and recommendations can be made on the basis of
our review of current technology and our own experience with formal inspec-
tions on the precompiler development projects.

a. RADC should introduce formal inspections on a variety of operational
software development projects. Our own project was not a straight-
forward application of formal inspections. We had to shape a
compromise methodology as we went along. Our sample was far too
small and the whole development effort too difficult to control
adequately to serve as a basis for valid statistical testing.

b. In implementing formal inspections, R.ADC should insist on following
the guidelines provided in the documentation developed by M. Fagan
and his associates. This should include the use of available
checklists and the development of new ones for use with high-level
languages of special interest to RADC . Inspection criteria should
be augmented in accordance with the particular high-level design
methodology selected by RADC.

Various systematic approaches to design have been proposed and
implemented in the last few years. To our knowledge, none of these
approaches covers the full range of design problens (refer to
Appendix C). Some emphasize control flow, others stress data
structures. Obviouhly, neither can be ignored in any design task.
But the control flow approach is likely to be more suitable for
systems that are algorithm oriented , whereas the data oriented
approach may lend itself more readily to the structuring of systems
that are heavily transaction oriented. Such transaction oriented
problems are the favorite examples of design researchers . This is
not surprising because, by their nature, such problems are readily
transformable into data process ing structures , and usually the
objective is to develop a system which is function-equivalent (to
an existing system) but execution enhanced.

1 .C. A. R. Hoare touched on this problem when he remarked that in
many applications , algorithm plays almost no role, and certainly
presents almost no problem . The real problem is the mass of
detailed requirements; and the only solution is the discovery or

1Hoare , C. A. R., written comments on “Characteristics Needed for a Common
High Order Programming Language,” September 1975 as quoted in McGowan , C.
and Kelly, J,, “A Review of Decomposition and Design Methodology ,” Infotech
State of the Art Conference on Structured Design, October 1976, pp . 53-79 .
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invention of general rules and abstractions which cover the many
thousands of cases with as few exceptions as possible. This is
what makes a program short, simple, and reliable, as compared with
one which attempts to treat every case as a special case. But the
discovery of such general rules and classifications demands at
least the same inventive genius as that of a classificatory biolo-
gist, or the grammarian of a natural language, or even a theoretical
physicist.” Indeed, Harlan Mills has suggested the use of formal
gra ars a~ powerful descriptive tools for managing just such
diversity. The point here, however, is that different categories
of problems (applications) must be considered. For some of these,
recently developed design methodologies (combined with other formal
systems such as forma l grammars) can provide substantial support.
Where applicable, these design methodologies will also provide
guidelines and supplemental criteria for even more effective design
inspections .

c. Implementation of high-level inspections under TBSP presents no
major problems, if only because TBSP does not specially address
high-level design in the formal inspection sense.

Low-level design inspections and code inspections present a minor
problem of synchronization. The scope of a formal low-level design
inspection is considerably greater than the typical design or code
segment of TBSP. Thus, one can decide to develop a sufficient
number of design or code units to warrant a formal inspection of
two hours. One is then faced with the further decision of keeping
design and code inspections separate or mixing them.

If separate code and design inspections are held, the process can
be described level by level (as shown in Figure 9), with design and
code inspections alternating as the development process proceeds
downward through the hierarchic structure.

If mixing is the choice one can inspect the design of, say, the nth
level subsidiary modules and the code of the parent modules (on the
n-I level). This approach makes it possible for the same inspectors
who reviewed the lower level design to also inspect the higher
level code. Since the design of subsidiary modules constitutes the

H definition of the parent module in the TBSP approach, the mixed
approach seems to have the advantage of logical continuity. It is
probably best suited for an implementation strategy that proceeds
along one branch of the decomposition tree rather than proceeding
level by level across the entire tree. If one chooses the latter
implementation strategy, the quantity of either design or code
materials to be reviewed at a given level is more likely to be
sufficient to justify separate inspections.

2Linger, R. C., Mills , H. D., Structured Programming Theory and Practice,
being published.
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(yields modular decomposition tree of n levels)
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~ 
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~ 

inspection

• code level 2 (stub 3) 
~2 ir,Spectiofl

•

• •

• •

• low-level design level n-i 1
~ 

inspection

• code level n-2 (stub n-I) 12 insPeCtion

• low-level design level ‘~ ~~~ 
inspection

• code levels n-i and n 
~2 

inspection

Figure 9. Level-by-Level Development and Inspection Plan
ii
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Separate inspections under a single-pa.th imp lementation strategy
involve covering the design of various levels in one inspection
session and the code of those levels in another session. Without
this “lumping,” there probably will not be enough code (or design)
to warrant a code (or design) inspection of two hours or more.
Under TBSP, however , this approach has one potential drawback
deriving from the incremental implementation philosophy that under-
lies it. According to that philosophy, one begins with a single
segment, which is refined and expanded in successive steps. In
order to have operable code at each increment, however , the code
developed at a given level will not just be compiled but also run.
So if one allows the code of several levels of modules (along a
given path) to accumulate, one can wind up inspecting the code of
some segments that have already been run (and therefore partially
debugged) as well as some segments (representing the nodules on the
cut-off level) which have only been through a “clean compile.”
Whether debugging followed by a formal code inspection is acceptable
is probably a matter of cost-effectiveness -- an aspect we were not
able to address in our experiments.

4.2 TEAM COMPOSITION

As proposed in the literature on formal inspections, an inspection team
of four members is probably best. Such a team would consist of the reviewee,
two inspectors, and a moderator. The two inspectors may take turns reading

- - (and paraphrasing) code and design during inspections. In some cases it may
be technically advantageous for the inspectors to work closely together
during the preparation phase. In our own experiments , we tried this approach
when, due to conflicting personal commitments , the two inspectors could not
meet the scheduled inspection dates. After several postponements, it was
decided that they would need a rather thorough review of the programs and
would, therefore, spend the better part of a day together , preparing for the
inspection. The inspection was held at the end of that day and proceeded
unusually smoothly. Both inspectors reported that they were able to work
much more efficiently in this manner and were personally convinced that they
had done a thorough review. Test results seem to bear them out.

The role of the moderator is a very important one in formal inspections. It
is his responsibility to plan, prepare, and conduct the inspections and to
make sure that erro rs detected are indeed removed f rom the system .

His principal concern during an inspection is to “keep things moving” by
focusing attention strictly on error detection (and not correction), by
concentrating on real problems and side-stepping trivia , and by somehow
preserving the frequently sensitive balance between inquiry and inquisition .
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4.3 TRAINING REQUIREMENTS

Training in two categories is required :

a. Training for programmers, analysts , and managers in top-down
structured programming techniques , especially those that directly
support the objectives of formal inspection, e. g., top-down design
methods , design and program verification, and code reading

b. Training for inspection moderators.

A general background in TBSP will be of great value to coders, designers , and
inspectors as well as moderators. Aside from the moderator, who should undergo
special moderator training, no special training is considered necessary
for the other inspection team members. It is assumed that they have a good
knowledge of the programming and design languages used on the particular
project as well as the design of the system being produced . It is also
assumed that they know and follow the pertinent precepts of structured pro-
graimning since this will greatly facilitate readability and intelligibility
of the design or code being inspected. Finally , it is our conviction that
code reading and stepwise verification techniques, as practiced in SP are of
great help to inspectors reviewing someone else’s work.

Moderators will benefit from additional training designed specifically to
enhance the effectiveness of formal inspections. Such training courses have
been offered periodically in IBM, and the principal investigator on this
project attended such a course during the early phases of the contract.

Such a course would offer training in three principal areas:

a. Studying the inspection process and the role and responsibilities
of the moderator

b. Witnessing a live inspection and critiquing it

c. Conducting (participating in) a formal inspection.

Normally, these course activities occupy two-and—one-half to three days .
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A.l INTRODUCTION

The scope and objectives of the COBOL/NLS experiment were determined by two
related RADC contracts currently being performed by FSD. One of these con-
tracts covers a study of online system (IlLS) support for Modern Programming
Practices (NP?); the other is a study of design/code verification (D/C V)
under Modern Programming Practices. With concurrence from RADC, it was
decided that the preprocessor which was to be written on the IlLS contract
would serve as the code that would be inspected as part of the D/C V contract.
Specifically, this plan would accomplish the following objectives:

o It would assist in the development and testing of a precompiler for
processing the control logic structures of Structured Programming
(SP) within a standard COBOL program.

o It would provide a “real world” opportunity for evaluating the
shared-screen facilities of IlLS to accomplish code inspection where
the inspectors are geographically remote from the author of the
code .

A.2 DESCRIPTION OF THE COBOL PREPROCESSOR

A.2.1 Purpose

A person who wants to write structured code can do so in a straightforward
manner if the SP control structures translate easily into the programming
language he or she is using. For example, the IFTILENELSE structure can be
implemented directly in PL/I with the words IF, THEN, and ELSE.

Sometimes a logical translation has to be made first before a particular SP
structure can be expressed in the language. An example of this is the conver-
sion of a WHILEDO structure into an equivalent DO UNTIL for purposes of COBOL
implementation via a PERFORII UNTIL statement.

For some languages this intermediate logical step, while possible , leads to
code that no longer displays the kind of structure and readability that is
the hallmark of structured programming . In that event, an additional program
(a macroprocessor or a precompiler) has to be written which will accept SP
control structures and translate them into equivalent statements acceptable
to the standard compiler for the particular programming language (see Figure A-i).
On the NLS project, the decision was made to write a precompiler that would
process structured programming extensions to COBOL as a separate program
execution prior to invoking the standard COBOL compiler. The precompiler
itself was to be writ ten in the L-lO language according to the standards
described in Volumes I, II , and III of the Structured Programming Series ,
titled “Programming Language Standards,” “Precompiler Specifications ,” and
“ANSI COBOL Precompiler Program Documentation .”
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COBOL Input

ANSI COBOL

~ •l Compatible ANSI COBOL Objectecomp, er 
Compiler Compiler ModuleInput*

~~~~~~~ pil:r

•Optional source input listing sequence numbers in columns 73-80.

Figure A-i. The Place and Function of the Precompiler in Producingan Object Module from Structured COBOL Statements
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A.2.2 Language Standards

The preprocessor is designed to accept structured COBOL (i.e., standard COBOL
plus the four control structures (IFTHENELSE , DOWHILE , DOUNTIL , and CASE )
written in indented format. It is designed to produce output which is accept-
able to the ANSI 1974 COBOL compiler.

The L-1O code inspected on this experiment was that designed to process the
DOUNTIL and DOWHILE constructs only.

A.2.3 Top-Down Design

The COBOL preprocessor was designed and coded in a top-down manner. The
overall control structure , called TOP MODULE, is given below in Process
Design Language (PDL).

TOP MODULE

(COBOL) TOP
Read input record
DO WHILE no procedure division is found and there are still input
records

Wr ite output records including optional records
Read next input record

ENDDO
IF procedure division is found

Initialize
DO WHILE there are still input records

INCLUDE process keyword VRBPROC
ENDDO
Complete processing of last records

ELSE
Error Processing 

-

ENDIF
Clean up remaining proces sing
STOP RUN

The basic design logic takes advantage of the fact that every COBOL program
consists of four readily identifiable parts, called divisions :

o The IDENTIFICATION DIVISION
o The ENVIRONMENT DIVISION
o The DATA DIVISION
o The PROCEDURE DIVISION.

These divisions always occur in the order indicated above .

Since all active code will be contained in the procedure division of the
COBOL program , preprocessing essentially consists in passing over all 80-
column records preceding the procedure division, issuing an error mess age if
no procedure division is found at all , and processing any procedure records

A-4



according to the control structure keywords dictated by the preprocessor
format: DO, UNTIL , WHILE, ENDDO , IF , ELSE , etc.

PROCESS KEYWORD, GET RECORD , WRITE RECORD, and ERROR PROCESSING, the modules
on the next lower level, are not shown in the PDL . PROCESS KEYWORD is a
large CASE statement, which passes control to the proper lower program to
generate the output code for DO UNTIL , DO WHILE, ITtHENELSE, and CASE figures .

The algorithms for the DOUNTIL and DOWHILE are shown below:

ALGORITHMS
DO

GENERATE AND STACK TWO LABELS
IF IT IS DOWHILE GENERATE BRANCH

TO SECOND FROM TOP LABEL
GENERATE ENTRY POINT WITh TOP LABEL
SAVE CONDITION IN STACK

ENDDO
IF IT IS DOWHILE GENERATE ENTRY POINT

WITh SECOND FROM TOP LABEL AND
GENERATE IF CONDITION STATEMENT

IF IT IS DOUNTIL GENERATE IF
NO (CONDITION) STATEMENT

REMOVE CONDITION FROM STACK
GENERATE BRANCH TO TOP LABEL
REMOVE TWO LABELS FROM STACK

Since any number of control figures of various types may be nested, proper
order is maintained by continuously stacking and unstacking control indicators.

- 

- 
In the DOWHILE/DOUNTIL figures , a “w” or “u” are stacked as flags , as is a
unique label generated by a counter and literals i .e .,  “N---DOUNTIL” or “N---
DOWHILE .” These are processed by the ENDDO routine to generate the end
conditions in the preprocessor output stream .

A.2.4 Top-Down Coding

Coding and testing of the preprocessor proceeded in the order imposed by the
top-down design. The TOP MODULE received the label CCOBOL. All variables
used in the preprocessor are declared and initialized there.

Some functions are performed only once. These are written as INCLUDED code.
Examples are verb processing (VRBPRC) , which corresponds to “PROCESS KEYWORD”
in the PDL design, DO processing (DOPROC), IF processing (IFPROC), etc.

Code modules that are called from many different locations are written as
subroutines; e.g., error processing, get word , and condition scan. (Standard
IlLS subroutines were used for primitive procedures such as getting and putting
records.)

The top-level code structure is shown below (Figure A-2). The inspection
path is indicated by those procedures whose names appear in the darker
boxes.
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A.3 THE COBOL/NLS CODE INSPECTION

A.3.l Approach

As described above, the COBOL/NLS inspection was intended to serve two
purposes : to provide a test vehicle for the NLS shared-screen facility and
to conduct a formal code review of the COBOL preprocessor to be written in
the L-10 language . It was, therefore, decided to use NLS to provide the
audio-visual coimnunication and processing link between the west and east
coast participants in this code review , which would be conducted in f ive
phases:

a. Overview
b. Preparation
C. Inspection
d. Rework
e. Follow-up.

It was anticipated that the shared-screen facility would be used in the
overview and inspection phases, with optional use reserved for the other
phases. The “electronic mail” facilities of NLS would be used to disseminate
specifications and working documents to the members of the inspection team
during the entire review process.

A.3.2 Overview

During this first phase of the inspection, in which all members of the
inspection team participate, the designer/coder descr ibes the overall problem
area being addressed as well as the specific area he has designed (or coded)
in detail. On this project the overview was conducted via NLS, the author
discussing via voice-line the inspection plan that had been sent to the west
coast participants through the “mail” facilities of NLS. This plan (which
could be read by all participants on the CRT) covered the following topics:

a. Purpose of inspections generally, and of this inspection in
particular

b. The planned use of the NLS shared-screen facilities in carrying out
the inspection of the COBOL precompiler code

c. The purpose and design of the preprocessor

d. The f ive phases of the inspection

e. The role of the participants in each of these phases

f. The tentative inspection schedule

g. NLS procedures for effecting proper sign-on and cotmnunication
between east and west coast
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The west coast participants had been requested to review the program related
materials that had been made available to them and to discuss them during
this coast-to-coast overview .

Normally , a code inspection would have been preceded by a design inspection ,
which would have obviated the need for an overview during the code inspection.
Since no design inspection had been held, however , it was decided that:

a. An overview operation would be conducted and would serve as a 
- 

—

design and inspection tutorial as well as a test of the NLS equip-
ment and facilities

b. The designer of the precompiler would serve as code reader during
the actual inspection, as he would be in the best position to
paraphrase the code in accordance with the design requirements.

The overview session lasted one hour, and all participants felt that the
system had worked quite well and the overall objectives and individual roles
were well understood . (In this overview sess ion, as well as the subsequent
inspection, the two inspectors were located in Menlo Park, California, while
the moderator, author/designer, and project observer were located in
Gaithersburg, Maryland.) 

-

A.3.3 Preparation

The preparation operation is a period during which the participants do their
homework. This involves reviewing design specifications and the implementa-
tion of the design logic in the code that is to be inspected . Sometimes
major prograimning errors are found during preparation.

On this experiment, the SRI inspectors at Menlo Park, California , were asked
to note any major questions that might arise and to take them up-at the
beginning of the code inspection session. No significant problems arose
during this operation.

The inspectors reported spending about two hours each on this preparatory
operation.

A.3.4 Inspection

The code inspection was conducted via NLS and voice-line connection between
FSD, Gaithersburg and SRI, Menlo Park. The entire session lasted one hour
and 45 minutes, during which time the code representing the DOWBILE and
DOUNTIL processors of the COBOL precompiler was inspected . This represents
about 100 lines of L-10 code.

Each participant viewed the code being read on the CRT. 
- 
Additional inspec-

tion materials included hard copy of the code , the design specifications ,
and error checklists .
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The reading of the code proceeded quite smoothly via the shared-screen
facility and voice line. Particularly useful was the NLS capability that
allows easy repositioning of code on the screen so as to show the full range
of a structure under discussion.

Since the SRI personnel were the only L-1O experts on the inspection team ,
some extended discussions of the syntax and semantics of that language crept
into the inspection discourse. Also, because of the great flexibility of the
NLS (and the inspectors’ expertise with it), there was a tendency to pursue
matters of optimization and/or elegance, which are normally avoided during an
inspection.

Major and minor errors were discovered in three categories (each). They are
tabulated below, with references to the solutions implemented and described
in the rework section below.

OCCURRENCES 
____ 

SEVERITY Rework ERROR
TYPES Missing Wrong Extra Major Minor Reference

Data initialization 1 1 Paragraph a

Data reference
notation 2 2 Paragraph c

Use of global
variables 1 1 Paragraph d

Error messages 2 2 Paragraph g

Stacking logic 3 3 Paragraph b, e

Efficiency 2 2 4 Paragraph f

Total 2 9 2 6 7

A.3 .5 Rework

In the Rework phase of a formal inspection, the designer or coder/implementer
resolves all errors or problems noted during the inspection. The actions
taken to make the necessary corrections to the inspected COBOL Precompiler
code are suimsarized below.

a. Changed the initialization of the variable “cnts” from 0 to 1.
This va riable is used to insure uniqueness of pa ragraph names.
While the value of zero is not an error , it is not what the pro-
gramer intended .

b. Changed the declaration of “cndstk” from an array to a str ing
variable. This is needed in order to correct the mechanism used to
stack the records holding the condition.

A-9 



- --- — - -  ~~~~~~ - - -~~~~ --. --~~~~~~ --_- --~~~~~~~____, ~~~~~~ - -- -—~—-

c. Changed “*nestk(nndx)*” to “*nestk*(nndx)” in two places.
d. The use of “wktp” in DOPROC following a call to the procedure

ADDPERDC will cause malfunction because both procedures use and
change “wktp.” Therefore, a new text pointer called “holdtp” was
declared to replace “wktp” in DOPR(jC.

e. In line with b. above, the change was made to store the condition
in the condition stack as a string. This was done in both DOPROC
and ENDDOPROC .

f. These changes were not made to correct an error but to improve the
efficiency of the program by doing the same thing in a better way.

g. The deletion of “filptr-endfil” is a result of modification f.
Theoretically, it is impossible to ever leave the loop in this way.
The error in this case lies in the fact that if this exit did
occur , there is no message to indicate that it happened .

During rework , two additional errors were found -- one major and one minor.
The major one was caused by a peculiarity of the L-1O language: array refer-
ences have to start at 0 whereas string references have to start at 1. It is
interesting to note that this error was detected during inspection as a minor
initialization error (minor because it would have caused faulty execution but
no blowup). Upon reexamination during rework it became clear that this
faulty initialization would , indeed , have caused a blowup .

A. 3.6 Follow-Up

During this operation , ~he moderator sees to it that all issues, concerns ,
and errors identified du ring inspection are resolved.

Correction of the errors was a relatively easy task as some had already been
discussed during the inspection. Testing of the inspected code revealed no
further errors.

A.3.7 Evaluation of NLS Facilities

NLS (or , more appropr iately, DNLS -- Display On-Line System) provided us with
the capability of viewing all the documentation necessary for the review:
the code review plan , the code specifications , the code design process branches,
and all code developed to date. By using a partially completed coninand (and
subsequently deleting it), each participant could place a pointer (cursor) on
the other’s screen. Each participant could insert statements in the file. —

This ability leads the participants to use the screen as a blackboard . If
the file had been upda ted before the start of the session , both the new and
old versions of the code would have been available -- and statements (even
all modifications) inserted could have been subsequently deleted.

A- 10
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A voice telephone connection with headset or speaker-phone is an absolute
necessity. The reason for this is that NLS offers no convenient way for
processing systeia cousnands interspersed with typewritten messages as this
would cause an inexcusable degradation of system responsiveness.

The split screen facility turned out to be impractical for this review, and
was not used. First, too many documents were needed, e.g., input specs ,
output specs, several code modules, and the design were often needed concur-
rently. Further, the screen was too small to contain both significant blocks
of code and fixed format output specs at the same time. Finally, the review
was performed during a heavily loaded period and the use of split screen
would have unduly delayed the work.

A.3.8 Conclusions

Code inspections can be effectively conducted via NLS and voice coimnuni-
cation. Despite inevitable delays and an occasional miscue, coninunication
between the two inspection groups was good. The NLS shared screen facility
provides very powerful and responsive communication, and participants have a
tendency to go beyond error finding to error correction. Both parties can
view the new code being suggested and , if there is agreement, that code can
be incorporated in the current p—togram in a matter of seconds.

Whether inspections ought to be carried out using a system such as (D)NLS is
a question that can be answered only in the context of the cost, the relative
geographic dispersion of a project development, and the inherent suitability
of NLS for implementing the methodology of formal inspections.

Although no reliable dollar-cost estimates could be developed from just one
limited exper iment, a few pertinent observations can be made .

a. It is clear that a system such as NLS may well provide the only
solution to the problem of obtaining occasional expert services
from people located in distant parts of the country. In such a
case, the capabilities of NLS (augmented by audio) can be used most
effectively.

b. If one estimates the CPU cost of a time sharing system at three
percent of elapsed time, the inspection itself consumed only slightly
more than three minutes of CPU time.

c. The author/designer of the precompiler is of the opinion that the
NLS code review is likely to have cut debugging time for the inspected
code in hal f .

d. Overall it was felt that in this particular case the inspection was
cost effective and that the cost factor may improve when highly
skilled personnel from different locations must be brought together
pe riod ically , but for short periods of time , to inspect the des ign
and code of modules constituting a much larger system than was
inspected on this experiment.
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e. Dissemination of pertinent inspection materials can be accomplished
quite easily, rapidly , and nonredundantly via a system like NLS,
especially if all pertinent documentation is routinely entered into
NLS files as it becomes available. For then this dissemination
amounts to no more than sending a message telling inspectors where
to look in their files for the specific materials needed.

The table below contains time (in hours) estimates for people involved in the
experiment.

Overview Preparation Inspection Rework Follow-Up

Moderator 2O+l~ 
- 1.75 1 2

Author 1+1 - 1.75 1 1/2
Inspector 1 1 2 1.75 - -
Inspector 2 1 2 1.75 - -

Past experience indicates that code inspections can be conducted at a rate of
150 lines of code per hour. The rate attained on this experiment was 60
lines of code per hour. Several reasons can be adduced for this:

a. Although the participants in the inspection had used the coast-to-
coast NLS hookup for the overview operation , none of them had ever
conducted an inspection via the facilities of a nationwide tele-
processing system.

b. tartly as a result of a , there were some log-on problems , partial
wipeouts, as well as occasional audio difficulties.

c. Since the inspectors had served as expert consultants on the L-10
language , they not only searched for errors but also occasionally
suggested more efficient ways of coding certain segments that were
functionally correct. With the NLS hookup , it was easy for them to
talk about such possible improvements and then to display them on
the CRT in realtime.

d. At the particular time of day of the inspection (1 PM EDT), NLS
turned out to be in unexpectedly heavy use and, the refore , responded
quite slowly.

e. Because of time pressure, the preprocessor code had been written
virtually without comments.

Despite all these minor woes, six of the seven major errors contained in the
inspected code were found du ring the inspect ion , for an effectiveness rating

‘Includes time devoted to composing the messages containing the inspection
materials. All participants in the overview spent one hour at the NLS
terminal.
2lncludes preparation time for overview (about one hour). —

A—1 2

~~~~~ ~~~~~~
-
~~~~~~

--- - - 

—



of 86 percent. It took one additional hour of programmer time to attain
error-f ree execution.

As regards methodological suitability or compatibility, there are proponents
of formal inspections who see a basic conflict here . The reasons, though not
yet clearly articulated , appear to center on a conviction that the intensive,
person-to-person, goal-oriented communication required for effective inspec-
tions , cannot be simulated satisfactorily with telephone and CRT.

The present experiment provided little information to confirm or allay these
fears , but a few observations may be made to put the results and concerns in
broader perspective. The COBOL/NLS experiment involved only a small segment
of code (about 100 lines) that could be reviewed in a rather confined concep-
tual space. Little “jumping around” through a complex design structure (such
as is often required when a low-level module of a large and complex system is
being inspected) was required in this case. In cases where this is required ,
the inevitably sequential displays of even the most responsive TP network
system may begin to obscure, rather than reveal , the logical relationships
among the inspected modules. And when a few people are gathered around a
single display screen, there usually is not enough work space to allow them
to read the screen and also make effective use of any hard copy materials

- - needed to provide adequate reference. The larger and more complex the overall
design , the more likely it is that paper shuffling will have to be reintro-
duced in the working environment.

The fact remains, however , that the results obtained on this experiment were
most encouraging, and it is felt that additional experience and experimenta-
tion with shared-screen inspections will provide usable solutions to these
potential problems .
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B.1 INTRODUCTION

One of the experiments initiated involved the development of a JOVIAL/ JOCIT
precompiler which could serve as a test vehicle for formal design and code
inspections. The JOVIAL precompiler specifications produced on this task
follow the general precompiler design found in Volume 2 of the Structured
Programming Series .

The precompiler was developed in top-down incremental fashion. Since the
Top-Down Structured Programming (TDSP) methodology, as described in the 15-
volume series , does not specifically address high-level designs it was decided
to follow the FSD standard on this. This standard assumes that a design
methodology is used which leads to a systematic decomposition of specified
system functions into a h ierarchy of modules. This hierarchic structure
(called a modular decomposition tree) determines the TDSP implementat ion
strategy. According to this strategy, implementation proceeds in cycles
centering on the nodes of the decomposition tree. A node is not coded until
the detailed design of its subsidiary nodes has been completed and inspected.
Normally the process flows downward along major single paths. The first path
to be implemented is usually chosen because it supplies a functional capab ility
that is critical to the overall design or is of immediate value to the user.

In orde r to adhere as closely as possible to the basic methodology of formal
inspections , we conducted design inspections separately from code inspections.
A practical case can be made for mixing them. These alternatives are consid-
ered in the sections that follow .

B.2 APPROACH

For the purpose of our integration experiment , we can distinguish three major
phases in the software development process: high-level design, low-level
design , and coding. High- and low-level design were recorded in PDL (Process
Design Language). Coding was done in COBOL.

The high-level design (Ia) inspection involves a test of high-level PDL
design (including the modular decompositon of the entire precompiler program)
against the functional specifications. Test criteria are primarily externally
(user) oriented . The level of detail is carried to a point where one PDL
statement is estimated to require anywhere from 15 to 25 source statements.
The level of detail for the low-level design (Ii) inspection should be suff i-
cient to serve as a basis for coding . In format inspections a ratio of one
PDL statement to five to ten source statements is assumed.

The initial scope and direction of high-level design is illustrated in Figure B-i.
It represents our first systematic decomposition of the JOVIAL/JOCIT precom-
piler development specifications into major functions. At this highest
level , the decomposition criteria reflect mainly user-oriented requirements,
but in a heavily data processing oriented task it is difficult to maintain
that outlook very long. Internal requirements (reflecting the “how” of da ta
processing) soon demand consideration . For example , on our task , such consid-
erations prompted us to break down keyword processing into a n imber of
separate modules to handle DO, IF, ELSE , CASENTRY , CASE , ELSECASE , EN’DCASE,
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Figure B-i. User-Oriented Functional Decomposition Tree
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ENDDO , and ENDIF. By refining our analysis in this way, we reached the next
level of detail —- the low-level design stage. The expanded modular decompo-
sition tree for this level is shown in Figure B-2. The area enclosed by broken
lines includes the modules that were subjected to formal design and code
inspections. This limitation was imposed to save project time and to accom-
modate the inspectors , who we re “borrowed” from other departments. Otherwise
the entire program would have been inspected.

According to TDSP criteria, level n is not coded until the detailed design
for level n+l has been completed , and modules on level n+l are not coded
until the next level (n+2) has been designed in detail. Thus, there is in
TDSP an underlying cyclic process consisting of (low-level) design, coding ,
and integration, which is carried out again and again as the implementation
proceeds downward through the modular decomposition tree. The use of “stubs”
makes it possible to produce operable code for each of the increments created
in this process. These operable increments are typically quite small and one
has to decide if a code inspection is to be held for each TDSP code increment .
For our experiment , we decided to keep the inspections to some reasonable
number and formulated the following implementation and inspection plan :

H o High-level design followed by 10 inspection covering the entirefunctional design

o Low-level design of all levels in the modular decomposition tree ,
followed by an I~ inspection

o Coding of levels 1, 2, and 3 of the CASE-branch followed by an 12inspection

o Coding of the remaining levels of the CASE-branch followed by
another 1

2 inspection.

In this manner , the layered approach to design and coding was maintained , the
path (branch) selection guideline sat isf ied , and the separation of design and
code inspec tions preserved.

B.3 INSPECTION RESULTS

The results of the four inspections are summarized below.

B.3.1 High-Level Design Inspection (l
o)

Formal inspection guidelines propose that a high-level inspection be conducted
when the des ign has been woo rked out to a level of detail where one design
language statement corresponds to 15 to 25 program source statements . This
is intended to be an externally (user) oriented inspection on the functional
level.

B-4
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The pertinent 1
~ 
inspection data are as follows:

a. Six minor errors were discovered in about 300 PDL statements,
implying an error density of two percent

b. Inspection time: 11.5 people-hours

c. Distribution of errors:

Six minor errors: three omissions
three extra.

B.3.2 Low-Level Design Inspection (Ii)

The low-level design inspection is intended to assure that the module-level
design is complete. Experience indicates that at this point the ratio between
low-level design statements and program source statements will be somewhere
between 1:3 and 1:10. The lowlevel design inspection is module and logic
oriented. Inspection criteria emphasize internal rather than external
specifications.

The pertinent I~ inspection data are as follows :

a. Eight major and seven minor errors were discovered in 700 PDL
statements, implying an error density of 15/700 2.14 percent —

b. Inspection time: eight people/hours

c. Distribution of errors*:

Major Minor Total

Error Categories 0 W E 0 W E Major Minor

— Logic 5 6 5 6
Documentation/
Messages 3 1 3 1

3 5 0 7 0 0 8 7

*0 = Omission W = Wrong E = Extra

B.3.3 Code Inspections (1
2
)

A code inspection is normally held as soon as a program unit has achieved
clean compilation. Because of TDSP requirements , the notion of “program
unit” had to be extended to include mo~e than just one segment. Since SP
practice advocates producing operable code for each program increment , the
code inspected typically consisted of some that had already been run (operable
code) and some that had only been compiled successfully. In the process of

B-6 

-_ - - _



developing operable code, some errors were usually found. That is to say,
some error detection (and correction) had already been done before the 12inspection took place. The error density percentages given below are based
solely on errors detected during the formal 12 inspection.

The pertinent 12 inspection data are summarized below:

First 12 inspection:

a. Two major and five minor errors were discovered in 825 NCSS,
implying an error density of 1/825 one percent

b. Inspection time: eight people/hours

c. Distribution of errors :

Major Minor Total

O W E 0 W E Major Minor

Logic 1 1  1 2 1
Standards 1 1 2
Error/output messages 1 1
Other 1 1

_ _ _ _ _ _ _ _ _ _ _ _  
1 1 0  2 1 2  2 5

A detailed description of these errors (and rework action taken) can be found
in Addendum B.

Second 12 inspection:

a. Four major and five minor errors were detected in about 300 NCSS,
implying an error density of 9/300 = three percent.

b. Inspection time: three people/hours

c. Distribution of errors:

Major Minor Total

0 W B 0 W B Major Minor

Logic 1 3 4
Error/output messages 3 2 5

1 3 0 3 2 2  4 5
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The JOVIAL/JOCIT1 precompiler development task had two principal objectives:

a. To produce the precompiler itself, using TBSP

b. To use the growing precompiler as a test vehicle for integrating
TDSP and formal inspections.

Because of the experimental approach, adaptations were made to both method-
ologies as we went along. Hence, the task was neither a straightforward
development project nor a direct application of standard inspection techniques.

It should also be pointed out that the precompiler development task was
essentially a one-person project, and the delivered version of the JOVIAL/JOCIT
precompiler consisted of only about 1500 noncommented COBOL source statements.
We feel that this posed a very limited test for the formal inspection method-
ology. Formal inspections serve to detect errors, to analyze and record
them , and to use the analytical data for projection, prediction, and feedback.
These aims can be realized most fully on larger software develpment projects
yielding numerous measurements on individual variables. Quite clearly, the
dynamics of this kind of iteration were not present on the JOVIAL precompiler
development project.

Our experience indicates that it is desirable to carry out formal inspections
of design and code produced according to TBSP principles. The modifications
that had to be made to the two underlying methodologies were mostly directed
at achieving synchronization.

High—level design is not specifically supported by TBSP and so there is no
conflict of methodologies at this level. The high-level design was developed
in PDL to the appropriate level of detail, whereupon the high-level inspection
(l
o
) was carried out.

Low-level design and code inspections assume an inspection unit that is
typically much larger than the TBSP segment. Consequently, several increments
of code and/or design will be required to make an inspection cost-justifiable.
One may decide to accumulate design or code, and hold separate inspections;
or one may inspect design as well as code at the same inspection. Development
teams in IBM who employed the latter approach felt that inspectors who had
just reviewed the design of (lower-level) subsidiary modules, were logically
and actually in a better position to review the code of a particular module
that they would have been if (1) they had inspected the code at some later
time, or (2) if they were called upon to inspect code whose lower—level
design they had not inspected at all.

1The JOVIAL/JOCIT precompiler described here was inspected and unit-tested.
Its purpose was strictly experimental, however, and no attempt was made to
satisfy criteria related to other environments.
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Available checklists were of considerable help -- both generally (by providing
direction to the inspection) and specifically (by reducing the probability of
important criteria being overlooked).

Supporting documentation typically consisted of PDL and/or code, pertinent
specifications , checklists for COBOL and for the particular inspection being
conducted, a list of error categories , and (in most cases) a brief typewritten
summa ry of objectives . On several occasions, the inspectors remarked that a
large chart of the calling hierarchy of the entire system should be kept on
display throughout the inspections. Another valuable item (not available to
our inspectors) would have been a cross-reference listing of all program
entities. Such a listing should, ideally, show where these items were defined
and whether and where they were modified. Samples of inspection instructions,
checklists, and error analyses are included as addenda to this report.

In retrospect , we are inclined to conclude that our low-level design and code
inspections might have been more effective if we had mixed them instead of
keeping them separate. Our second I.) inspection was comp leted in two sessions,
about a week apart. At the first session it became apparent that the inspec-
tors , who had been away from the precompiler problem for about a month, had
grown stale and had not been able to devote enough time to offset this. A —

reinspection was decided upon. In preparing for the reinspection, the two
inspectors worked together for some five to six hours. The inspection was
conducted immediately afterwards and it progressed very smoothly. Perhaps if
the code inspection had been immediately preceded by a design inspection of
the subsidiary modules, these problems might not have occurred -- first of
all because the coverage of each inspection would have been smaller in a
mixed strategy, and because the design inspection might have served as direct
preparation for the (higher-level) code inspection.
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Addendum A. HIGH-LEVEL DESIGN INSPECTION CHECKLIST

ERROR CHECKLIST

All errors will be categorized as major or minor. They will be broken down
further into the following categories:

a. Error of omission (omission)
b. Error of commission (error)
c. Error of redundancy (extra)

The principal questions to be answered during the high-level design inspection
are these:

a. Is the design consistent with the JOVIAL/JOCIT precompiler
specifications?

b. Does it cover all and only those specifications?

c. Is the design sufficiently detailed to serve as a basis for the
low-level design?

The answers to these questions will determine whether another inspection of
the high-level design should be held or whether a rework operation should be
carried out. The former course will be taken if far-reaching problems are
discovered during this inspection. If the problems are minor and/or isolated,
the normal course will be to note these problems, rework the design, and
assure that the design changes address all the problems identified during the
inspection.

The following checklist is an elaboration of the major criteria given above.
Further elaboration is, of course, possible and you are encouraged to formu-
late your own criteria and checkpoints within the scope of the specifications
for this design .

a. Is the broad design understandable to you? If so, do you see any
major flaws in the design?

b. Are there areas in the design that are not understandable to you?
Do you see any major flaws?

c. Is the logical interrelation of parts clear to you? Do you see any
major flaws?

d. Is the logic of individual algorithms clear and acceptable to you?

e. Has sufficient attention been paid to external (user oriented)
requirements?
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f. Have human factors been properly addressed?

g. Is the control flow clear and acceptable to you?

h. Has sufficient attention been paid to abnormal conditions or excep-
tions? Rave they been handled adequately?

i. Have all major parameters been adequately described (without going
to the byte/bit level)?

OUR MAIN OBJECTIVE IS TO CHECK FOR:

o INCOMPLETENESS
o INCONSISTENCY
o REDUNDANCY.

OPTIMIZATION IS NOT A MAJOR CONCERN AT THIS POINT.

ASSUMPTIONS

a. Structured verbs will appear as the first symbol on an input record.
(Therefore, no statement labels will be permitted on the same record as
a structured verb.)

b. All structured verbs which appear as the first symbol of a record will
be assumed valid except if they are part of a comment, character:literal
field or symbol continued from the previous input record.

B-Il
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Addendum B. SUMMARY OF 1
2 

INSPECTION RESULTS

CODE CHANGES:

a. READ - INIT - OPTION routine should be
rewritten to include an output message stating
which options are taken. Errors in option
card should be printed .

ACTION-TAKEN: Code rewritten to conform. E!~/MINOR/OMISSION

b. MAIN MODULE has too many END-OF-FILE checks.

ACTION-TAKEN: One has been eliminated. LO/MINOR/EXTRA

c. PROC-STATUS-SCAN . COL-PTR should be incre-
mented before ENDDO (Line 122).

ACTION-TAKEN: Statement added to correct
problem. LO/MAJOR/OMISSION

d. PROC-STATUS-SCAN. In counting nested
— subscript levels , if $ is found outside of

$) or ($ context, the subscript level should
be reset to zero (Line 99ff) .

ACTION-TAKEN: Code rewritten to conform. OT*/MINOR/CHANGE

e. MAIN MODULE . Indent DO WHILE (Line 18).

ACTION-TAKEN: Line indented. ST/MINOR/WRONG

f. MAIN MODULE Line 43. If test can be replaced
with a simpler condition variable.

ACTION-TAKEN: New condition variable
introduced. ST/MINOR/EXTRA

g. MAIN MODULE . Setting of PROG-END does not
set END-OF-FILE-C. Hence, an endless loop may
result.

ACTION-TAKEN: PROG-END is reset following the
inner DO. LO/MAJOR/ WRONG

*Reinterpretation of Specs.
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SPECIFICATION UPDATES:

a. Keyword splitting at end of input record will not be allowed .

b. Comment fields on same card as structured verb will be allowed . Other 
—

code will be discarded and an error message given.

c. Preprocessor must be able to handle batched JOVIAL programs . (Present
code already provides this capability.)

d. If, in processing nested subscript levels , the preproces sor encounters a
dollar sign which is not preceded by a left parenthesis or followed by a
right parentheses, then the subscript level count will be reset issue-
diately to one, and the dollar sign will be assumed to be a sentence
delimiter.

ERROR CODES :

CONTROL BLOCK DEFINITION CD

CONTROL BLOCK USAGE CU

LOGIC LO

DOCUMENTATION/COMMENTS/MESSAGE S DO

TEST & BRANCH TB

STANDARDS/STYLE ST

REGISTER USAGE RU

PROLOGUE PR

STORAGE USAGE SU

DESIGN ERROR BE

MAINTAINABILITY MN

EXTERNAL LINKAGES EL

ERROR/OUTPUT MESSAGES EM

OTHER OT

B-13



Appendix C. NOTES ON DESIGN AND ITS
PLACE IN THE SOFTWARE —

DEVELOPMENT PROCESS

When we examine the subtasks and phases that constitute the software develop-
ment process in order to clarify the role and scope of design, we find less
than total agreement among writers on this subject.

N. Fagan1 distinguishes 9 levels of process operations in the programming
process :

Level 0 Statement of Objectives
Level 1 Architecture —

Level 2 External Specifications I DLevel 3 Internal Specifications esign

Level 4 Logic Specifications
Lev’~l 5 Coding/Implementation Code
Level 6 Function Test
Level 7 Component Test Test]
Level 8 System Test

DoD agencies characterize the software life cycle as follows:2

Concept Requirements Software Operation
Formulation Specification Development and Maintenance

‘Fagan, N. “Design and Code Inspections to Reduce Errors in Program Develop-
ment,” iON Systems Journal, Vol. 15 , No. 3, 1976 , pp. 182-211.

2Wegner , P, “Programming Languages ,” IEEE Transactions on Computers, Vol. C-25,
No. 12, December 1976, pp. 1207ff.
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Boehm
1 
represents the software life cycle as follows:

System
Requirements

Softwa re
Requirements

Preliminary
Design

Detailed
Design

Code and
Debug

Test and
Preoperations

Operation and
Maintenance

J. N. Yohe2 provides the following subdivision of the programming process :

a. Problem definition
b. Selection of algorithms and data structures
c. Selection of a programming language or languages
d. Specification of program logic and structure
e. Coding
f. Debugging and testing
g. Redefinition of above steps as necessa ry
h. Documentation
1. Maintenance.

Yohe remarks that problem definition is often done inadequately for two
reasons :

a. The individual who originates the problem may not have a thorough
understanding of it

b. Lack of communication (sometimes attributable to a lack of common
background).

‘Boehm, B. W., “Software Engineering, “IEEE Transactions on Computers ,” Vol. C-25,
No. 12 , December 1976 , pp. 1226ff.
2Yohe, J. N., “An Overview of Programming Practices ,” Computer Surveys,
Vol. 6, No. 4, December 1974.
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He then proceeds to imply that problem definition is largely a matter of
looking up the appropriate algorithms. Specifications, he adds , should be
oriented toward the program which is to be written. (These are the internal
specifications we have mentioned in the formal inspection context.)

Daniel Couger1 distinguishes seven phases in system development.

I Documentation of the existing system

II Analysis of the system to establish requirements for an improved
system (the logical design)

III Design of a computerized system (the physical design)

IV Programming and procedure development

V Implementation

VI Operation

VII Maintenance and modification.

Couger’s breakdown is geared to producing what we have called function-
equivalent but execution-enhanced systems. He observes, “Systems analysis,
then, is concerned with Phase I and II of the system development cycle. The
product of systems analysis is the logical design of the new system: the
specifications for input and output of the system and the decision criteria
and processing rules. Phase III, the physical design phase , determines the
organization of the files and the devices to be used.”

Couger also notes that systems analysis development has been trailing hardware
development by a full generation. Large accounting systems presented the
first large-scale application areas that were thought to justify the imple-
mentation of huge computer systems. Today, we are inclined to speculate that
this may well have been a major reason for the continued limitation of the
scope of analysis and design to the requirements of appl ications which ,
though large, essentially involve but an orderly implementation of a one-to-
one transformation from existing manual procedures to automated ones. System
specifications for such applications frequently amount to statements describing
how existing operations are to be speeded up, centralized , integrated , etc.
For such applications -- not always easy to implement by any means -- analysis
and design can conveniently begin at a point where one can already speak
concretely about files , storage requirements , etc. But th is is hardly typical
of application problems . In fact, Couger ’s is perhaps a prime example of
those applications in which, accord ing to b are , “algori thm plays almost no

1Couger, Daniel, “Evolution of Business System Analysis Techniques,” Computing
Surveys, Vol. 3, No. 3, 1973.
2boare , C. A. R., written comments on “Characteristics Needed for a Common
High Order Programming Language,” Septermber 1975 as quoted in McGowan, C.
and Kelly, J., “A Review of Decomposition and Design Methodology,” Infotech
State of the Art Conference on Structured Design, October 1976, pp. 53-79
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role, and certainly presents almost no problem.” He suggests that the only
solution required in this type of application is the “discovery and invention
of general rules and abstractions which cover the many thousands of cases
with as few exceptions as possible.”

A comparison of approaches to the software development process will show
that:

a. There is a lack of standard terminology

b. Activities labeled the same are not likely to address the same
problems

c. In some approaches, design is not mentioned specifically at all; in
other cases, it appears in different places in the overall sequence
(thereby implying different inputs, outputs, and exit criteria)

d. High-level design, in particular , is commonly ignored.

If we accept the dictum that the structure of the program should match the
structure of the user’s problem (advocated most recently by Michael Jackson),
then the total design activity (high- and low-level design) must begin with
the user’s problem expressed in language that is familiar to him and appro-
priate to the nature of the problem itself. This user specification or
requirement (as it is often called) must then be systematically converted
into a structure that represents the user’s problem completely, unambiguously ,

- - and with adequate precision . The recasting of this problem statement into a
form suitable for (ultimate) processing by a computer is probably the most

F difficult task of software engineering today. Whatever methodology we develop
for this activity must supply not only suitable form but also content.
Whatever transformations we apply to the user’s statement of the problem must
be meaning preserving. Otherwise, we are likely to produce programs that are
formally correct but do not solve the user’s problem. Formal inspections can
play a significant role in assuring that this does not happen. But they can
do this only if high-level design can be systematized and extended in scope.
This is a promising area for further exploration.

Once could begin by conducting an analysis of existing designs. Another
approach would be to begin with an analysis of existing design methodologies,
to investigate their scope, assumptions, degree of specificity, and extensi-
bility, and to relate them in this fashion to the appropriate segments of the
software development process as well as to different categories of applica-
tion problem.

Otherwise, the nature of the problem suggests that one should look for assist-
ance in the disciplines of formal linguistics (particularly semantics) and
logic for this first task of paraphrasing English-language statements into a
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form which is capable of expressing all the essential relationships implicit
in the original proble. statement, and which provides it own method of infer-
ence. Without1this, there is no way of proceeding from the “word problem” to
the algorithm. Early results obtained by FSD researchers employing a
semantic—analysis approach to design appear to indicate that, in principle ,
the ethod can be used to achieve program designs that compare favorably with
those achieved by competent designers using more traditional methods. One
additional motivating factor behind this semantics-oriented research stems
from the realization that, with increasing life-cycles, the systems of the
future will need to build on a base that supports not only design and imple-
mentation but also modification and ongoing communication between computer
syste. and its technical and non-technical users.

~It is realized that , in its extreme form , the view described here could be
taken to call fo r no less than an almost “routine” systematization of scien-
tific discovery. The intended scope is far more modest but nonetheless
indispensable. The goal is not routine scientific discovery, but the
development of a systematic approach to applications-problem solving within
established disciplines.

C-5
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Appendix D. GLOSSARY

Compound Program Any program obtained by replacing function
nodes by prime programs. (As a special
case, prime programs are considered com-
pound programs themselves).

Exit Criteria Formal criteria which must be satisfied
before the current task may be consid-
ered complete. Exit criteria constitute
the basis for forma l inspections.

Major Error In formal inspections, an error that
causes system failure.

Minor Error In formal inspections, an error that will
adversely affect the usability or main-
tainability of the program.

Prime Program A proper program which has no proper
subprogram of more than one node.

Process Design Language See Program Design Language.

Program The combination of one or more modules
to fulfill the software requirements of
a project. (See Structured Program.)

Program Design Language (PDL) An English-like language used to describe
the control flow and general structure
of program design. The purpose of such
a language is to facilitate the systematic
translation of functional specifications
into data processing statements. This
translation process may begin at a rela-
tively high design level and go through
several refinements before reaching the
level of detail required for code writing.
(Also referred to as Process Design
Language).

Program Segment A program segment is a block of code
that is uniquely identifiable, especially
as source code , and is a pa rt of the logic
flow of a module at execution time. Seg-
ments are organized such that their com-

— bined execution will result in the overall
f unction of the module being performed .
Usually a segment takes up a single
listing page.
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Proper Program A program with a control structure which

1. Has a single entry line and a single
exit line

2. For each node, has a path through
that node from the entry to the exit
line.

Segment See Program Segment.

Structured Program A compound program constructed from a
fixed basis set of prime programs.

Stub A stub is a block of code that is
temporarily used in place of a more
complex block of code that is required
to complete a function.

Top-Down Decomposition Top-down decomposition is the activity
that produces a definition of all the
modules of a program, the relationships
among modules (including interface
specifications), a functional specifica—

• tion for each module, and a description
of the format of any common data bases.
This activity does not include the
detailed design of each module.

Top-Down Structured Programming TDSP incorporates two methodologies:
(TDSP)

1. A methodology for the stepwise
generation (and verification) of
structured programs using a small base
of prime program structures (Struc-
tured Programming)

2. A methodology for implementing programs
in a hierarchic (top-down) sequence of
cyclic processes in which design , code ,
integration, and testing are carried
out concurrently (Top-Down Programming).

0-2
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